Introduction
School Year EMSI

2014-2015 3lIR

What is Python?

» Compromise between shell script and C++/Java program

Python Programming

Introduction .
> Intuitive syntax

» Interpreted (sort of)
Rabii El Ghorfi » Dynamically typed
» High-level datatypes
» Module system

» Just plain awesome

Copyright : University of Pennsylvania

Introduction Introduction

Java Ct+

public class Hello { #include <iostream>

public static void main(String[] args) { int main()

System.out.println("Hello, world!"); {
} std::cout << "Hello World!" << std::endl;

y return O;

Introduction

Python

print "hello world"

Python

» What does it mean for a language to be “interpreted?”

» Trick question — “interpreted” and “compiled” refer to
implementations, not languages
» The most common Python implementation (CPython) is a
mix of both
» Compiles source code to byte code (.pyc files)
Then interprets the byte code directly, executing as it goes
No need to compile to machine language
Essentially, source code can be run directly

vvyy

Python

How do you use it?

» Write code interactively in the interpreter

Last login: w"d Jan 15 12:31:56 on ttys084
1~% python
Python 2.]" 3 fdctault Aug 25 20813, 99:984:0
IGCC 4.2.1 Covpatible Apple LLAM 5.2 (clang- 56@ 28,6311 on darwin
Type "help", "copyright", "erecits" ar "license" for more infarmatinn.
el

> Run a file in the interpreter with import file

» Run a file on the command line with python file.py

Basics

>>> 1 + 1

2

>>> print "hello world"
hello world

>>>x =1
>>> y =2
>>> x +y
3

>>> print x
1

Types

What does “dynamically typed” mean?

Types

What does “dynamically typed” mean?
» Variable types are not declared

» Python figures the types out at runtime

Types

type function:

>>> type(x)

<type 'int'>
isinstance function:

>>> isinstance(x, int)
True

Difference?

Types

We prefer to use “duck typing.”

“When | see a bird that walks like a duck and swims like a
duck and quacks like a duck, | call that bird a duck.”

— James Whitcomb Riley

try:

assume object has desired type
except:

try something else

Types

What does “strongly typed” mean?

Types

>>> x =3
>>> x "hello"

» Has x changed type?

» No — x is a name that points to an object

> First we make an integer object with the value 3 and bind the
name 'x' to it

» Then we make a string object with the value hello, and rebind
the name 'x' to it

» Objects do not change type

Types

Interpreter keeps track of all types and doesn't allow you to do
things that are incompatible with that type:

>>> "hi" + 5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects

Functions

def add(x,y):
return x + y

>>> add(3,4)
.

» Colon (:) indicates start of a block

» Following lines are indented

Types in Functions

» Function declaration doesn't specify return type
» But all functions return a value (None if not specified)

» Parameter datatypes are not specified either

Style

Blocks are denoted by whitespace

Use spaces, not tabs

Single line comments are denoted with # ...
Multi-line comments are denoted with """ ... mn»

Variable and function names should be lower_case with
underscores separating words

Use docstrings to document what a function does:
def add(x,y):

""" Adds two numbers """
return x + y

Blocks in the Interpreter

>>> def add(x,y):
return x + y

>>>
» ... indicates more input is expected
» Need blank line to indicate end of block

Datatypes: Overview

v

v

v

v

v

None
Booleans (True, False)

Integers, Floats

Sequences
> Lists
> Tuples
» Strings
» Dictionaries

Classes and class instances

Modules and packages

Booleans

» Booleans: True, False
» The following act like False:

> None
» 0
» Empty sequences

» Everything else acts like True

Booleans: Operations

Operation Result
X OF ¥ if xis false, then y, else x
® and y if xis false, then x, else y
not x if x is false, then True, else ralse

» and, or both return one of their operands

» and, or are short-circuit operators

Booleans: Examples

>>> (2 + 4) or False
6

>>> not True

False

>>> not O

True

>>> 0 and 2

0

>>> True and 7

7

Integers and Floats

» Numeric operators: + — * / ¥ **
» No i++ or ++i, but we do have += and -=

» Ints vs. Floats

>>> int(5/2)

2

>>> 5/2,

2.5

>>> float(5)/2
2.5

>>> int(5.2)

5

Assignments

>>>a=b=0
>>>a, b=3,5

Something cool:

>>> a, b=>b, a
>>> a

5

>>> b

3

Comparisons

>>> 5 ==

True

>>> "hello" == "hello"
True

>>> 1 1= 2

True

>> 5> 3

True

>>> "p" > "a'

True

If Statements

if a ==

print "a is 0"
elif a ==

print "a is 1"
else:

print "a is something else"

If Statements

» Don't need the elif or else

» Condition can be any value, not just Boolean

if b5:
print "hello"

if "hello":
print 5

For Loops

>>> range(5)
(o, 1, 2, 3, 4]

>>> for i in range(5):

print (i)

> w NN e O

Ranges

>>>
(5,

range (n) produces [0, 1, ..., n-1]
range(i, j) produces [i, i+1, ., j-11
range(i, j, k) produces [i, i+k, ., m]

range(5, 25, 3)
8, 11, 14, 17, 20, 23]

Break and Continue

>>> for i in range(5):

print i

if i < 3:
continue

break

w NN = O

While Loops

>>>
>>>

W N = O -

i=20

while i <= 3:
print i
i+=1

Example: Factorial Function

5! S5%4*3%2%1
ot =1

Iterative Factorial Function

def factorial(x):

Iterative Factorial Function

def factorial(x):
ans = 1

for i in range(2, x+1):

ans = ans * i
return ans

Recursive Factorial Function

def factorial(x):

Recursive Factorial Function

def factorial(x):
if x ==
return 1
else:
return x * factorial(x - 1)

Imports

>>> import math
>>> math.sqrt(9)
3.0

Python Files

import <>

def <>:

def <>:

def main():

if __name_ _main_

main()

Python Files

» __name__ is a variable that evaluates to the name of the
current module

> e.g. if your file is hl.py, _name__ = ¢‘h1’’

» But if your code is being run directly, via python hl.py,
then _name__ = ¢‘__main__’’

Running Python Files

> |n the IDLE:

» File open hello.py
» Run module F5

» In command line:

» python hello.py

